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g-Deformation of the Double Complex
Ernst Equation
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From a known three-dimensional representation of the double quantum algebra
sty (n(J)), a nonlinear g-deformed Ernst equation system is obtained. By using a gauge
covariant form, the deformation effects are found to generate a torsion in the field and
to form a gauge field with source.
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formation effects.

1. INTRODUCTION

In the past 10 years or so quantum group (Drinfel'd 1985; Drinfeld, 1986;
Kulish and Reshetikhin, 1983) have been found to be important in many branches
of physics (Belaviret al, 1984; Knizhnik and Zamolodchikov, 1984; Verlinde,
1988). Many new realizations of the quantum gr@&ig,(N), especiallySUy(2),
have been obtained. These results show that the properties of quantum groups are
quite similar to those of classical Lie groups in the casq aobt being a root of
unity. It has been shown that rotational spectra of nuclei and molecules can be
described very accurately in terms of a Hamiltonian that is proportional to the
Casimir operator of the quantum gro&y(2) (Bonatsot al., 1991; Raychev
et al, 1990). But the applications of the quantum groups to classical field theory
are few. Zhong (1992) discussed the double quantum algei(a(J)) that is
believed to link with the gravitational field equations. Moreover, Feng and Zhong
(1996) gave the g-deformed double complex Ernst equation that in fact describes
the g-deformed gravitational wave field with cylindrical symmetry. In this paper,
we get a nonlinear system thatis a true g-deformed double complex Ernst equation.
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Furthermore, the physical meaning of the g-deformation is discussed. We find that
the deformation effects are to generate a torsion in a proper gravitational field, to
separate the gauge field into parts with distinct properties, and to form a gauge
field with source.

The organization of this paper is as follows: in Section 2, the g-deformed
double complex Ernst equation based on the quantum algeh#®(J)) is given.
In Section 3, by using the covariant form the physical and geometric explanation
of the g-deformation effects is discussed. Section 4 gives the conclusion.

2. THE g-DEFORMED ERNST EQUATION

The general double complex function method has been discussed in several
papers (Zhong, 1985, 1988, 1989). We only use the relevant result3.degtote
the double-imaginary unit, i.eJ =i(i? = —1) or J = g(e? = +1, ¢ # +1).
According to Biedenharn (1989) and Zhong (1992), in the three-dimensional
case the generating operatdgsand J¢ of the quantum algebrswy (n(J)) can be
represented as

1 1
A2 A2
=% J= (E) J, = (§> J_ 1)

whereJ; and J;. are the generating operators of €, (J)) algebra with

S )
o =(5 %) s=a+a’ @

The quantum number is

g* —q7*  sinh{x)
q—g!  sinhy

[xlq = , v=Ing, qe(0,1] 3)

Let
J3
L] = > 35,

then the commutation relations are

1 1
L3 =508 +39, L5=50{-39 (4)

J2 A
(L) =Satd [iig=-1) =51
Obviously, whenq — 1, Liq changes into the infinitesimal generating element
Li(i =1, 2, 3) of the Lie groufsUn(J)). This means that the three-dimensional
representation o$w,(n(J)) is special, i.e., it is also a Lie algebra. In fact, the
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transformation form from_f1 toLi(i =1, 2, 3)is an affine isomorphism

1 1
A2 AN 2
gt u=(5) e u=(3) ©

1 1
Ll = ?Jg, L2 = 5(J+ + \]—)1 L3 = E(J-F - ‘J—) (7)

where

By using of the above results, we consider the following equation
Fo = 8uMl =8, M1 — [MI, M] =0, (u,v=1,2) (8)
where
a1p% = M9, 309 = MJp%, ol =gl(xiyia,J) (k=1,2,3),
_Aej &l g, Se]—Cey g Cej—SE g
26048073 1 gdpeu TN g gn T
q_ -9 4 _ =M q q
_éez —&y .q , S& —C& .q  C& —S& g ©)
26948073 gdqgd Tt g0 g

with the bar denoting complex conjugation as usgfak= f% + Jy9; f9(x, y;q)
andy9(x, y; q) are real functionss andc satisfy the condition

My =

My =

c2-J%s2=1 (10)
where
15 V2 2V
= y = — 7, = y = — 11
c=cx,y)=Tye S=SKV=1ove (D

and the real functioV = V (X, y) is a solution of the equations
1 1
1+ V3oV + ;(1; VAV =0, (1+VHV - Z(m V3)2=0 (12)

The concrete form of V can be easily written out. We see that, in ¢aamds are

the common cosine and sine functions fbe i and forJ = ¢, ¢, ands are the
hyperbolic cosine and sine functions. From Egs. (9)-(11), Eq. (8) changes into a
double g-deformed Ernst equation

Re(gq)V(ZJ)gq = q+g*1 V)e® - V(g)ed (13)
gl = f94 Jyd
whereRedenotes the real part, and the operators

1
Vi = 0% + J2;8X +97, Vi = (0 Jdy) (14)
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Wheng — 1, Eq. (13) becomes

Re(S)V(ZJ)S = Vel - Ve
e="f+Jy

This is just the double complex Ernst equation (Zhong, 1985, 1988, 1989). The
caseJ =i describes the axisymmetric gravitational field (Ernst, 1968), and the
caseJ = ¢ describes cylindrical gravitational waves (Letellier, 1984). Therefore,
Eqg. (13) represents a double quantum deformation of the common Ernst equation.
We can regard? as a g-deformed potential that describes the proper g-deformed
gravitational field.

Although the difference between Eqgs. (13) and (15) is only a coefficient
%(q +qg7Y), Eq. (13) is a completely new type of nonlinear differential equation.
For example, it9 = exp(f9) is a real function, then we obtain an elliptic type of
quasi-linear equation

(15)

1 2
v2f‘4=§(«/a—\/q—l) ALIAT (16)

Whenq = 1, it returns to the Weyl solutions
V2f =0 (17)

Of course, as a quantum group is not a group in the proper sense, it can not be
guaranteed thaf® and 9 derived fromM?9 also satisfy the Einstein vacuum
field equations. This means that the g-deformation result may not be a proper
gravitational field.

3. THE COVARIANT FORM AND THE g-DEFORMATION EFFECTS

To explain what deformation effects are containec:9n the results con-
cerned must be written into a “covariant” form. However, it must be stressed that
the “covariance” here is different from the common case. On one hand, it is not
the covariance under an arbitrary coordinate transformation as in the general rela-
tivity. It is the pure gauge covariance with respect to a gr@dmlefined as in the
following. And the new g-deformed solutions are generated by those gauge trans-
formations. On the other hand, if we thint £) is a two-dimensional space-time
with the signature,,, = diag(1,J?), and M, M) is taken as a Lorentz covariant
vector, then we may obtain the relativistic gauge field equations. But it is easily
seen that the result oMf, Mg), under a Lorentz transformation, generally does
not correspond to a new g-deformed solutt8nThis means that even the Lorentz
rotation of ¢, 2) is still not allowed. Therefore, in the following the coordinates are
fixed as the cylindrical coordinates,(y, t, o) = (1, z, 7, ). And (t, ) isregarded
as an absolute two-dimensional space-time. Only for convenience we write

M{ = M = M9, MJ =MZJ=NA (18)
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For a localization gauge transformation
Tsipf— §9=5p7 Se sSUm(J)) (19)

M, (1 = 1, 2) can be taken as the connection. Therefore, one can define the co-
variant derivativev,,. For example

V9 = 9,09 — Mpd (20)
The transformation rule df1;} is
To: M9 — M9 = SMIS™ +(3,9)S™ (21)
Therefore, from Eq. (18) one can obtain a covariant equation
V7 =0 (22)
The gauge field
Fl, = 8,MJ —8,M1 — M3, M7] (23)

is antisymmetric. It has only one independent compofght= —F,}. The inte-
grability condition asks for the covariant equation

Fi, =0 (24)
i.e., the gauge field vanishes. Of course, one always have
v,F,, =0 (25)

Now we discuss the concrete case of gravitational field that is more complex
than the above. 19 is a g-deformed Ernst solution, théh can be written as

A
q_ Z=mnatja q2 149 g3 19
M,l—zmMJ3 + M3+ miJ” (26)
where
q__ -9 -9 =4 q q
O Shlcs R _ Se;p —Ce me — Cep —Sey
1 — ! 1 — — ! 1 — — !
gd 4 g ed 4 ga gl + ¢gu
q_ -4 ~—q -4 q q
el & @ Sep —Ce e Ce; — Se, 27)
2 = =g’ 2 — ’ b = — (o —
gd 4 gd gl + gd ed 4 gd

ande; = 9,¢9. The bar denotes the complex conjugation. Notice that, although
Eq. (13) can be also written as Eq. (24), it is not covariant under an arbitrary gauge
transformation. The reason is that n&y} must have the special form defined as

in EqQ. (26). But under a transformatidi the resultM;} = Ts(M;)) probably is

not as such. For this reason using a method similar to Chinea (1981) we consider
the following differential equation

MIst = STMY + 9, S (28)
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whereﬂ/lvﬁ is still defined by Eq. (26). However? must be substituted by a solution

£9. And the matrixS® € SU,(n(J)). Its element &%)} = (%)} (9, &9, 89, E%; X, y;

q) (i,j =1, 2,3) is a function of those variables. Although Eq. (28) is more
complex, the concrete solution can be carried out as in Chinea (1981). For two
solutionsS! andS] we define an operator" as

(SfoS))(e9, &9, 89, &%) = Sj(e9, &9, 89, 8%) S(e9, &9, 89, 5%) (29)

It can be easily proved that by this operator theGgof all solutions ofS'’s form
a group, which can be regarded as a subgroupléfi(J)). In fact, itis related to
a general g-deformation of the Geroch group (Zhong, 1992).

Therefore, we obtain an explanation of the g-deformed gravitational fields.
Let ¢ be a fundamental vector field installed in the space-time. The gauge group
is taken a<z9. And the covariant derivative and the gauge field corresponding to
the connectioM,] in Eq. (26), respectively, are denoted%yandF,. Therefore,

a g-deformed gravitational fields solution is just% which makesFJ, =0, i.e.,
the “interaction” vanishes. In other word$, makes the equation

Vigd =0 (30)

integral, ifp? exits. The above discussion also holds for the cagp-efl. Now a
solutione is to make the gauge field null, i.e.

Fd, =09,M, —0,M, — [M,, M,] =0,
M, =mpJs+mid +m3d,
m, = mi¥(e9 — &) (31)

Notice that, the transformatiofis and T4, in essence, are theaBklund transfor-
mations (Chinea, 1981) generating new solutioasds?, respectively.

Now, we discuss the physical difference between fig]dand fieldF,,, i.e.,
the problem of the g-deformation effectd,] can be written as

9 _ Ad q
M, = A, + D,

[A
A?L = E(mlqll J3 + mﬁz J+ + m?f \]7),

A (A A A\ 9yl
q _ _ a1, — _ H“
DM_<2 2)mﬂ‘]3_(‘/2 2) £ J & (32)

Since we require that the transformation rule abdfiimust continuously translate
into the transformation rule aboi,, asq — 1, the transformation rules about
Al andDjl, respectively, must be

Al A1 = SIAY(S) T 4 (3, S)(SH
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DY — DI = s'DY(sN) (33)

So A} still can be taken as a connection, édfilis a vector under the gauge trans-
formation. This means thail} has been split into parts with distinct properties,
andDj}, in fact, corresponds to a “torsion.” Obviouddf! — 0whenq — 1. Thus
the deformation effect, in view of the fixed absolute coordinates ¢, o), is to
generate a torsion in the first place. N&f, can be split into

Fo,=FlL +Ta, (34)
Fo, =0, A —9,A% — [Ag, All, (35)
T2, = 9,0} — 3,0 — [A], D] +[A], Dj] (36)

where the gauge fieléﬂv is the curvature part of the field,}, is a combination
of torsions, and clearl§,, = 0 whenq = 1.

To further clarify the physical meaning of the g-deformation, we take the
covariant divergences in both sides of Eq. (35), and it can be written as

2
o A A 9, £99,99 — 9, £99, 9
ZVEF/?V:JE’qu:(E_ E) JV/‘j[ (f9)2 Js

q
ET(mf}Z —m¥)J, — (mk — mﬂ3)J_] (37)

Itis easily seen from Eq. (37) that generajfy£ 0 unlessy 9 = const. According
to Eq. (33),j, does not vanish under arbitrary gauge transformation. Thesn
be regarded as a source. This indicates that wiegt const., the g-deformation
effect is to split the null gauge field,;, into two parts with distinct properties,
particularly the gauge fieléﬂv with a source appearance.

The above g-deformation effects, in essence, stem from the characteristic
noncommutative relation of the quantum grdsig, ((J))

q¥ . 3¢ =g*'3, - q¥ (38)

For the proper gravitational fieldg & 1), Eq. (38) changes into a commutative
relation, and bottDj} and j; vanish. Therefore, the proper gravitational fields ac-
tually correspond to some source-free, torsionless, and null gauge fields. By using
the gauge transformations, one can obtain various gravitational field solutions.

4. CONCLUSION

We have shown that a nonlinear system of g-deformed double complex Ernst
equation is obtained. The physical effects of the g-deformation are to generate a
torsion in a proper gravitational field, to separate the gauge field into two parts
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with distinct properties, and to form a gauge field with source. The results in this
paper can be extended in other directions. For example, about the Lie algebra
of a non-Abelian Lie group one can consider an affine transformation similar to
Eq. (6). Then the gauge field will be g-deformed. And one can obtain some new
types of nonlinear equations, etc.. Of course, the results do not necessarily relate
to a quantum group and the gravitational fields.

REFERENCES

Belavin, A. A., Polyakov, A. M., and Zamolodchikov, A. B. (198#8uclear Physics R41, 333.

Biedenharn, L. C. (1989Journal of Physics A: Mathematical and General Phy&i2sL.873.

Bonatsos, D., Raychey, P. P., Roussev, R. P., and Smirnov, Yu. F. (Cd8gjical Physics Letteli75,
300.

Chinea, F. J.(1981physical Review 24, 1053.

Drinfel'd, V. (1985).Soviet Mathematics-Doklad2, 254.

Drinfeld, V. (1986).Proceeding of the International Congress on Mathematié. 1, University of
California Press, Berkeley, CA, pp. 798-820.

Ernst, F. J. (1968Physical Reviewt67, 1175.

Feng, L. J. and Zhong, Z. Z. (1996hternational Journal of Theoretical Physi@s 245.

Knizhnik, V. and Zamolodchikov, A. B. (1984Nuclear Physics B47, 83.

Kulish, P. P. and Reshetikhin, N. Yu. (1983purnal of Soviet Mathemati&3, 2435.

Letellier, P. S. (1984)Journal of Mathematical Physi@b, 2675.

Raycheyv, P. P., Roussev, R. P., and Smirnov, Yu. F. (1980)nal of Physics G: Nuclear Physi&s,
L137.

Verlinde, E. (1988)Nuclear Physics B0O, 360.

Zhong, Z. Z. (1985)Journal of Mathematical Physic6, 2589.

Zhong, Z. Z. (1988)Scientia Sinica /81, 436.

Zhong, Z. Z. (1989)Journal of Mathematical Physic20, 1158.

Zhong, Z. Z. (1992)Journal of Physics A: Mathematical and General Phy&6sL867.



