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From a known three-dimensional representation of the double quantum algebra
suq(η(J)), a nonlinear q-deformed Ernst equation system is obtained. By using a gauge
covariant form, the deformation effects are found to generate a torsion in the field and
to form a gauge field with source.
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1. INTRODUCTION

In the past 10 years or so quantum group (Drinfel’d 1985; Drinfeld, 1986;
Kulish and Reshetikhin, 1983) have been found to be important in many branches
of physics (Belavinet al., 1984; Knizhnik and Zamolodchikov, 1984; Verlinde,
1988). Many new realizations of the quantum groupSUq(N), especiallySUq(2),
have been obtained. These results show that the properties of quantum groups are
quite similar to those of classical Lie groups in the case ofq not being a root of
unity. It has been shown that rotational spectra of nuclei and molecules can be
described very accurately in terms of a Hamiltonian that is proportional to the
Casimir operator of the quantum groupSUq(2) (Bonatsoset al., 1991; Raychev
et al., 1990). But the applications of the quantum groups to classical field theory
are few. Zhong (1992) discussed the double quantum algebrasuq(η(J)) that is
believed to link with the gravitational field equations. Moreover, Feng and Zhong
(1996) gave the q-deformed double complex Ernst equation that in fact describes
the q-deformed gravitational wave field with cylindrical symmetry. In this paper,
we get a nonlinear system that is a true q-deformed double complex Ernst equation.
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Furthermore, the physical meaning of the q-deformation is discussed. We find that
the deformation effects are to generate a torsion in a proper gravitational field, to
separate the gauge field into parts with distinct properties, and to form a gauge
field with source.

The organization of this paper is as follows: in Section 2, the q-deformed
double complex Ernst equation based on the quantum algebrasuq(η(J)) is given.
In Section 3, by using the covariant form the physical and geometric explanation
of the q-deformation effects is discussed. Section 4 gives the conclusion.

2. THE q-DEFORMED ERNST EQUATION

The general double complex function method has been discussed in several
papers (Zhong, 1985, 1988, 1989). We only use the relevant results. LetJ denote
the double-imaginary unit, i.e.,J = i (i 2 = −1) or J = ε(ε2 = +1, ε 6= ±1).

According to Biedenharn (1989) and Zhong (1992), in the three-dimensional
case the generating operatorsJq

3 andJq
± of the quantum algebrasuq(η(J)) can be

represented as

Jq
3 = J3, Jq

+ =
(
1

2

) 1
2

J+, Jq
− =

(
1

2

) 1
2

J− (1)

whereJ3 andJ± are the generating operators of thesu(η(J)) algebra with

J3 =
(

1 0
0 −1

)
, J+ =

(
0 J3

0 0

)
, J− =

(
0 0
J 0

)
,

(η(J)) =
(

1 0
0 +J2

)
, 1 = q + q−1 (2)

The quantum number is

[χ ]q ≡ qχ − q−χ

q − q−1
= sinh(γχ )

sinhγ
, γ = ln q, q ∈ (0, 1] (3)

Let

Lq
1 =

J3

2
Jq

3 , Lq
2 =

1

2J
(Jq
+ + Jq

−), Lq
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2
(Jq
+ − Jq

−) (4)

then the commutation relations are[
Lq

1, Lq
2

] = J2

2
1Lq

3,
[
Lq

2, Lq
3

] = −Lq
1,

[
Lq

3, Lq
3

] = 1

2
Lq

2 (5)

Obviously, whenq→ 1, Lq
i changes into the infinitesimal generating element

Li (i = 1, 2, 3) of the Lie groupSU(η(J)). This means that the three-dimensional
representation ofsuq(η(J)) is special, i.e., it is also a Lie algebra. In fact, the
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transformation form fromLq
i to Li (i = 1, 2, 3) is an affine isomorphism

Lq
1 = L1, Lq

2 =
(
1

2

) 1
2

L2, Lq
3 =

(
1

2

) 1
2

L3 (6)

where

L1 = J3

2
J3, L2 = 1

2J
(J+ + J−), L3 = 1

2
(J+ − J−) (7)

By using of the above results, we consider the following equation

Fq
µν = ∂µMq

ν − ∂νMq
µ −

[
Mq
µ, Mq

ν

] = 0, (µ, ν = 1, 2) (8)

where

∂1ϕ
q = Mq

1ϕ
q, ∂2ϕ

q = Mq
2ϕ

q, ϕ
q
k = ϕq

k (x; y; q, J) (k = 1, 2, 3),
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1 = −

1

2

ε
q
1 − ε̄q

1
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Jq

3 +
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1 − cε̄q
2

εq + ε̄q
Jq
+ +

cεq
2 − sεq

1

εq + ε̄q
Jq
−,

Mq
2 = −

1

2

ε
q
2 − ε̄q

2

εq + ε̄q
Jq

3 +
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2 − cε̄q
1

εq + ε̄q
Jq
+ +

cεq
1 − sεq

2

εq + ε̄q
Jq
− (9)

with the bar denoting complex conjugation as usual.εq = f q + Jψq; f q(x, y; q)
andψq(x, y; q) are real functions.s andc satisfy the condition

c2− J2s2 = 1 (10)

where

c = c(x, y) = 1∓ V2

1± V2
, s= s(x, y) = 2V

1± V2
(11)

and the real functionV = V(x, y) is a solution of the equations

(1+ V2)∂1V + 1

x
(1∓ V2)V = 0, (1± V2)∂2V − 1

2x
(1∓ V2)2 = 0 (12)

The concrete form of V can be easily written out. We see that, in fact,c ands are
the common cosine and sine functions forJ = i and for J = ε, c, ands are the
hyperbolic cosine and sine functions. From Eqs. (9)–(11), Eq. (8) changes into a
double q-deformed Ernst equation{

Re(εq)∇2
(J)ε

q = q+q−1

2 ∇(J)ε
q · ∇(J)ε

q

εq = f q + Jψq (13)

whereRedenotes the real part, and the operators

∇2
(J) = ∂2

x + J2 1

x
∂x + ∂2

y , ∇(J) = (∂x, J∂y) (14)
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Whenq→ 1, Eq. (13) becomes{
Re(ε)∇2

(J)ε = ∇(J)ε
q · ∇(J)ε

ε = f + Jψ
(15)

This is just the double complex Ernst equation (Zhong, 1985, 1988, 1989). The
caseJ = i describes the axisymmetric gravitational field (Ernst, 1968), and the
caseJ = ε describes cylindrical gravitational waves (Letellier, 1984). Therefore,
Eq. (13) represents a double quantum deformation of the common Ernst equation.
We can regardεq as a q-deformed potential that describes the proper q-deformed
gravitational field.

Although the difference between Eqs. (13) and (15) is only a coefficient
1
2(q + q−1), Eq. (13) is a completely new type of nonlinear differential equation.
For example, ifεq = exp(f q) is a real function, then we obtain an elliptic type of
quasi-linear equation

∇2 f q = 1

2

(√
q −

√
q−1

)2
∇ f q · ∇ f q (16)

Whenq = 1, it returns to the Weyl solutions

∇2 f = 0 (17)

Of course, as a quantum group is not a group in the proper sense, it can not be
guaranteed thatf q andψq derived fromMq also satisfy the Einstein vacuum
field equations. This means that the q-deformation result may not be a proper
gravitational field.

3. THE COVARIANT FORM AND THE q-DEFORMATION EFFECTS

To explain what deformation effects are contained inεq, the results con-
cerned must be written into a “covariant” form. However, it must be stressed that
the “covariance” here is different from the common case. On one hand, it is not
the covariance under an arbitrary coordinate transformation as in the general rela-
tivity. It is the pure gauge covariance with respect to a groupGq defined as in the
following. And the new q-deformed solutions are generated by those gauge trans-
formations. On the other hand, if we think (t, z) is a two-dimensional space-time
with the signatureηµν = diag(1,J2), and (Mq

1 , Mq
2 ) is taken as a Lorentz covariant

vector, then we may obtain the relativistic gauge field equations. But it is easily
seen that the result of (Mq

1 , Mq
2 ), under a Lorentz transformation, generally does

not correspond to a new q-deformed solutionεq. This means that even the Lorentz
rotation of (t, z) is still not allowed. Therefore, in the following the coordinates are
fixed as the cylindrical coordinates (x, y, τ, σ ) = (t, z, τ, σ ). And (t, z) is regarded
as an absolute two-dimensional space-time. Only for convenience we write

Mq
1 = Mq

t = Mq, Mq
2 = Mq

z = Nq (18)



P1: ZBU

International Journal of Theoretical Physics [ijtp] pp885-ijtp-467283 June 20, 2003 21:57 Style file version May 30th, 2002

q-Deformation of the Double Complex Ernst Equation 849

For a localization gauge transformation

Ts : ϕq → ϕ̃q = Sϕq S∈ SU(η(J)) (19)

Mq
µ (µ = 1, 2) can be taken as the connection. Therefore, one can define the co-

variant derivative∇µ. For example

∇µϕq = ∂µϕq − Mq
µϕ

q (20)

The transformation rule ofMq
µ is

Ts : Mq
µ→ M̃q

µ = SMq
µS−1+ (∂µS)S−1 (21)

Therefore, from Eq. (18) one can obtain a covariant equation

∇µϕq = 0 (22)

The gauge field

Fq
µν = ∂µMq

ν − ∂νMq
µ −

[
Mq
µ, Mq

ν

]
(23)

is antisymmetric. It has only one independent componentFq
12 = −Fq

21. The inte-
grability condition asks for the covariant equation

Fq
µν = 0 (24)

i.e., the gauge field vanishes. Of course, one always have

∇ρF ′µν = 0 (25)

Now we discuss the concrete case of gravitational field that is more complex
than the above. Ifεq is a q-deformed Ernst solution, thenMq

µ can be written as

Mq
µ =

1

2
mq1
µ Jq

3 +mq2
µ Jq
+ +mq3

µ Jq
− (26)

where

mq1
1 = −

ε
q
1 − ε̄q

1

εq + ε̄q
, mq2

1 = −
sε̄q

1 − cε̄q
2

εq + ε̄q
, mq3

1 =
cεq

2 − sεq
1

εq + ε̄q
,

mq1
2 = −

ε
q
2 − ε̄q

2

εq + ε̄q
, mq2

2 = −
sε̄−q

2 − cε̄q
1

εq + ε̄q
, mq3

2 =
cεq

1 − sεq
2

εq + ε̄q
(27)

andεq
µ ≡ ∂µεq. The bar denotes the complex conjugation. Notice that, although

Eq. (13) can be also written as Eq. (24), it is not covariant under an arbitrary gauge
transformation. The reason is that nowMq

µ must have the special form defined as
in Eq. (26). But under a transformationTs the resultM̃q

µ = Ts(M
q
µ) probably is

not as such. For this reason using a method similar to Chinea (1981) we consider
the following differential equation

M̃q
µSq = Sq Mq

µ + ∂µSq (28)
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whereM̃q
µ is still defined by Eq. (26). However,εq must be substituted by a solution

ε̃q. And the matrixSq ∈ SUq(η(J)). Its element (Sq)i
j = (Sq)i

j (εq, ε̄q, ε̃q, ¯̃εq; x, y;
q) (i , j = 1, 2, 3) is a function of those variables. Although Eq. (28) is more
complex, the concrete solution can be carried out as in Chinea (1981). For two
solutionsSq

1 andSq
2 we define an operator “◦” as(

Sq
1◦Sq

2

)
(εq, ε̄q, ε̃q, ¯̃εq) = Sq

1 (εq, ε̄q, ε̃q, ¯̃εq) Sq
2 (εq, ε̄q, ε̃q, ¯̃εq) (29)

It can be easily proved that by this operator the setGq of all solutions ofSq’s form
a group, which can be regarded as a subgroup ofSU(η(J)). In fact, it is related to
a general q-deformation of the Geroch group (Zhong, 1992).

Therefore, we obtain an explanation of the q-deformed gravitational fields.
Let ϕq be a fundamental vector field installed in the space-time. The gauge group
is taken asGq. And the covariant derivative and the gauge field corresponding to
the connectionMq

µ in Eq. (26), respectively, are denoted by∇q
µ andFq

µν . Therefore,
a q-deformed gravitational fields solution is just aεq, which makesFq

µν = 0, i.e.,
the “interaction” vanishes. In other words,εq makes the equation

∇q
µϕ

q = 0 (30)

integral, ifϕq exits. The above discussion also holds for the case ofq = 1. Now a
solutionε is to make the gauge field null, i.e.

Fq
µν = ∂µMν − ∂νMµ − [Mµ, Mν ] = 0,

Mµ = m1
µJ3+m2

µJ+ +m3
µJ−,

mi
µ = mqi

µ (εq → ε) (31)

Notice that, the transformationsTs andTq
s , in essence, are the B¨acklund transfor-

mations (Chinea, 1981) generating new solutions ˜ε andε̃q, respectively.
Now, we discuss the physical difference between fieldFq

µν and fieldFµν , i.e.,
the problem of the q-deformation effects.Mq

µ can be written as

Mq
µ = Aq

µ + Dq
µ,

Aq
µ =

√
1

2

(
mq1
µ J3+mq2

µ J+ +mq3
µ J−

)
,

Dq
µ =

(
1

2
−
√
1

2

)
mq1
µ J3 =

(√
1

2
− 1

2

)
∂µψ

q

f q
J J3 (32)

Since we require that the transformation rule aboutMq
µ must continuously translate

into the transformation rule aboutMµ asq→ 1, the transformation rules about
Aq
µ andDq

µ, respectively, must be

Aq
µ → Ãq

µ = Sq Aq
µ(Sq)−1+ (∂µSq)(Sq)−1,
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Dq
µ → D̃q

µ = Sq Dq
µ(Sq)−1 (33)

So Aq
µ still can be taken as a connection, andDq

µ is a vector under the gauge trans-
formation. This means thatMq

µ has been split into parts with distinct properties,
andDq

µ, in fact, corresponds to a “torsion.” ObviouslyDq
µ→ 0 whenq→ 1. Thus

the deformation effect, in view of the fixed absolute coordinates (t, z, τ, σ ), is to
generate a torsion in the first place. NowFq

µν can be split into

Fq
µ,ν = F̂q

µν + Tq
µν , (34)

F̂q
µν = ∂µAq

ν − ∂νAq
µ −

[
Aq
µ, Aq

ν

]
, (35)

Tq
µν = ∂µDq

ν − ∂νDq
µ −

[
Aq
µ, Dq

ν

]+ [Aq
ν , Dq

µ

]
(36)

where the gauge field̂Fq
µν is the curvature part of the field,Tq

µν is a combination
of torsions, and clearlyTq

µν = 0 whenq = 1.
To further clarify the physical meaning of the q-deformation, we take the

covariant divergences in both sides of Eq. (35), and it can be written as

2∑
µ=1

∇q
µFq

µν = j q
ν , j q

ν =
(
1

2
−
√
1

2

)
J∇q

µ

[
∂µ f q∂νψ

q − ∂ν f q∂µψ
q

( f q)2
J3

+
√
1

2

(∂µ − ∂ν)9q

f q

(
mq2
ν −mq2

µ

)
J+ −

(
mq3
ν −mq3

µ

)
J−

]
(37)

It is easily seen from Eq. (37) that generallyj q
ν 6= 0 unlessψq = const. According

to Eq. (33),j q
ν does not vanish under arbitrary gauge transformation. Thusj q

ν can
be regarded as a source. This indicates that whenψq 6= const., the q-deformation
effect is to split the null gauge fieldFq

µν into two parts with distinct properties,
particularly the gauge field̂Fq

µν with a source appearance.
The above q-deformation effects, in essence, stem from the characteristic

noncommutative relation of the quantum groupSUq(η(J))

qJq
3 · Jq

± = q±1J± · qJq
3 (38)

For the proper gravitational fields (q = 1), Eq. (38) changes into a commutative
relation, and bothDq

µ and j q
ν vanish. Therefore, the proper gravitational fields ac-

tually correspond to some source-free, torsionless, and null gauge fields. By using
the gauge transformations, one can obtain various gravitational field solutions.

4. CONCLUSION

We have shown that a nonlinear system of q-deformed double complex Ernst
equation is obtained. The physical effects of the q-deformation are to generate a
torsion in a proper gravitational field, to separate the gauge field into two parts
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with distinct properties, and to form a gauge field with source. The results in this
paper can be extended in other directions. For example, about the Lie algebra
of a non-Abelian Lie group one can consider an affine transformation similar to
Eq. (6). Then the gauge field will be q-deformed. And one can obtain some new
types of nonlinear equations, etc.. Of course, the results do not necessarily relate
to a quantum group and the gravitational fields.
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